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1. Introduction

Assume Q ⊆ K and let L/K be a Galois extension with
non-abelian group G .

Then L/K admits both a classical and canonical non-classical
Hopf-Galois structure via the Hopf algebras K [G ] and Hλ,
respectively.

By a theorem of C. Greither, K [G ] ∼= Hλ as K -algebras.

In this talk we apply Greither’s result to the case K = Q, G = D3

to yield a characterization of Galois extensions with group D3.

In the case G = D4, Greither’s theorem has implications for a
result of A. Ledet.



2. Hopf Galois theory

We recall the notion of a Hopf algebra, a Hopf-Galois extension,
and the Greither-Pareigis classification.

A bialgebra over a field K is a K -algebra B together with
K -algebra maps ∆ : B → B ⊗K B (comultiplication) and
ε : B → K (counit) which satisfy the conditions

(I ⊗∆)∆ = (∆⊗ I )∆,

mult(I ⊗ ε)∆ = I = mult(ε⊗ I )∆,

where mult : B ⊗K B → B is the multiplication map of B and I is
the identity map on B.



A Hopf algebra over K is a K -bialgebra H with a K -linear map
σ : H → H which satisfies

mult(I ⊗ σ)∆(h) = ε(h)1H = mult(σ ⊗ I )∆(h),

for all h ∈ H.

A K -Hopf algebra H is cocommutative if ∆ = τ ◦∆, where
τ : H ⊗K H → H ⊗K H, a⊗ b 7→ b ⊗ a is the twist map.



Let L be a finite extension of K and let m : L⊗K L→ L denote
multiplication in L.

Let H be a finite dimensional, cocommutative K -Hopf algebra and
suppose there is a K -linear action of H on L which satisfies

h · (xy) = (m ◦∆)(h)(x ⊗ y)

h · 1 = ε(h)1

for all h ∈ H, x , y ∈ L, and that the K -linear map

j : L⊗K H → EndK (L), j(x ⊗ h)(y) = x(h · y)

is an isomorphism of vector spaces over K . Then we say H
provides a Hopf-Galois structure on L/K .



Example 1. Suppose L/K is Galois with Galois group G . Let
H = K [G ] be the group algebra, which is a Hopf algebra via
∆(g) = g ⊗ g , ε(g) = 1, σ(g) = g−1, for all g ∈ G . The action(∑

rgg
)
· x =

∑
rg (g(x))

provides the “usual” Hopf-Galois structure on L/K which we call
the classical Hopf-Galois structure.

In general, the process of finding a Hopf algebra and constructing
an action may seem daunting, but in the separable case C. Greither
and B. Pareigis [4] have provided a complete classification of such
structures.



Let L/K be separable with normal closure E . Let G = Gal(E/K ),
G ′ = Gal(E/L), and X = G/G ′. Denote by Perm(X ) the group of
permutations of X .

A subgroup N ≤ Perm(X ) is regular if |N| = |X | and
η[xG ′] 6= xG ′ for all η 6= 1N , xG

′ ∈ X .

Let λ : G → Perm(X ), λ(g)(xG ′) = gxG ′, denote the left
translation map. A subgroup N ≤ Perm(X ) is normalized by
λ(G ) ≤ Perm(X ) if λ(G ) is contained in the normalizer of N in
Perm(X ).



Theorem 2. (Greither-Pareigis) Let L/K be a finite separable
extension. There is a one-to-one correspondence between Hopf
Galois structures on L/K and regular subgroups of Perm(X ) that
are normalized by λ(G ).

One direction of this correspondence works by Galois descent: Let
N be a regular subgroup normalized by λ(G ). Then G acts on the
group algebra E [N] through the Galois action on E and
conjugation by λ(G ) on N, i.e.,

g(xη) = g(x)(λ(g)ηλ(g−1)), g ∈ G , x ∈ E , η ∈ N.

For simplicity, we will denote the conjugation action of
λ(g) ∈ λ(G ) on η ∈ N by gη.

We then define

H = (E [N])G = {x ∈ E [N] : g(x) = x , ∀g ∈ G}.



The action of H on L/K is thus(∑
η∈N

rηη
)
· x =

∑
η∈N

rηη
−1[1G ](x),

see [2, Proposition 1].

The fixed ring H is an n-dimensional K -Hopf algebra, n = [L : K ],
and L/K has a Hopf Galois structure via H [4, p. 248, proof of 3.1
(b)=⇒ (a)], [1, Theorem 6.8, pp. 52-54].

By [4, p. 249, proof of 3.1, (a) =⇒ (b)],

E ⊗K H ∼= E ⊗K K [N] ∼= E [N],

as E -Hopf algebras, that is, H is an E -form of K [N].



Theorem 2 can be applied to the case where L/K is Galois with
group G (thus, E = L, G ′ = 1G , G/G ′ = G ). In this case the
Hopf Galois structures on L/K correspond to regular subgroups of
Perm(G ) normalized by λ(G ), where λ : G → Perm(G ),
λ(g)(h) = gh, is the left regular representation.



Example 3. Suppose L/K is a Galois extension, G = Gal(L/K ).
Let ρ : G → Perm(G ) be the right regular representation defined
as ρ(g)(h) = hg−1 for g , h ∈ G . Then ρ(G ) is a regular subgroup
normalized by λ(G ), since λ(g)ρ(h)λ(g−1) = ρ(h) for all g , h ∈ G ;
N corresponds to a Hopf-Galois structure with K -Hopf algebra
H = L[ρ(G )]G = K [G ], the usual group ring Hopf algebra with its
usual action on L. Consequently, ρ(G ) corresponds to the classical
Hopf Galois structure.

Example 4. Again, suppose L/K is Galois with group G . Let
N = λ(G ). Then N is a regular subgroup of Perm(G ) which is
normalized by λ(G ), and N = ρ(G ) if and only if N abelian. We
denote the corresponding Hopf algebra by Hλ. If G is non-abelian,
then λ(G ) corresponds to the canonical non-classical Hopf-Galois
structure.



3. Isomorphism Classes

It is of interest to determine how K [G ] and Hλ fall into K -Hopf
algebra and K -algebra isomorphism classes. We have:

Theorem 5. (Koch, Kohl, Truman, U.) Assume that G is
non-abelian. Then Hλ 6∼= K [G ] as K-Hopf algebras.

Proof. Over L, K [G ] and Hλ are isomorphic to L[G ] as Hopf
algebras, thus their duals K [G ]∗ and H∗λ are finite dimensional as
algebras over K and separable (as defined in [8, 6.4, page 47]).
Using the classification of such K -algebras [8, 6.4, Theorem], we
conclude that K [G ]∗ and H∗λ are not isomorphic as K -Hopf
algebras, and so neither are K [G ] and Hλ. In fact, by [8, 6.3,
Theorem], K [G ]∗ and H∗λ are not isomorphic as K -algebras, and
consequently, K [G ] and Hλ are not isomorphic as K -coalgebras. �



On the other hand, C. Greither has shown that following.

Theorem 6. (Greither) Hλ ∼= K [G ] as K-algebras.

Proof. (Sketch.)

Step 1. Obtain the Wedderburn-Artin decomposition of K [G ], thus:

K [G ] ∼= A1 × A2 × · · · × Am,

where Ai = Matni (Ei ) for division rings Ei .

Step 2. Show that the action of G on L[G ] restricts to an action
on the components L⊗ Ai of L[G ] ∼= L⊗K K [G ], and hence each
component L⊗ Ai descends to a component Si in the
Wedderburn-Artin decomposition of Hλ; (supressing subscripts) S
is an L-form of A.



Step 3. L-forms of A are classified by the pointed set
H1(G ,Aut(L⊗K A)). Let [f̂ ] be the class corresponding to the
class of S .

Step 4. There exists a map in cohomology

Ψ : H1(G ,GLn(L⊗K E ))→ H1(G , Inn(L⊗K A))

with [f̂ ] ∈ H1(G , Inn(L⊗K A)). Moreover, there exists a class
[q̂] ∈ H1(G ,GLn(L⊗K E )) with Ψ([q̂]) = [f̂ ].

Step 5. By Hilbert’s Theorem 90 (or its generalization)
H1(G ,GLn(L⊗K E )) is trivial, hence [f̂ ] is trivial, so S ∼= A as
K -algebras, thus Hλ ∼= K [G ] as K -algebras. �



4. Dihedral Extensions

Let Dn denote the dihedral group of order 2n for n ≥ 3. Explicitly,
we write

Dn = 〈σ, τ : σn = τ2 = στστ = 1〉.

Let L/K be a Galois extension with group Dn.
By Example 3 and Example 4 we have regular subgroups
ρ(Dn), λ(Dn) normalized by λ(Dn).

These regular subgroups give rise to the classical and canonical
non-classical Hopf-Galois structures on L/K via the K -Hopf
algebras K [Dn] and Hλ, respectively.



Example 7. In the case L/K is Galois with group Dn, the classical
Hopf-Galois structure on L/K has K -Hopf algebra

K [Dn] =


n−1∑
i=0

1∑
j=0

ai ,jσ
iτ j : ai ,j ∈ K

 .

Example 8. In the case L/K is Galois with group D3, then by [1,
Example 6.12], the canonical non-classical Hopf-Galois structure
on L/K has K -Hopf algebra

Hλ = {a0 + a1σ + τ(a1)σ2 + b0τ + σ(b0)τσ + σ2(b0)τσ2 :

a0 ∈ Q, a1 ∈ L〈σ〉, b0 ∈ L〈τ〉}.



Lemma 9. Let L/Q be a Galois extension with group D4. Then
Hλ consists of elements of the form

h = a0+a1σ+a2σ
2+τ(a1)σ3+b0τ+b1τσ+σ(b0)τσ2+σ(b1)τσ3,

where a0, a2 ∈ Q, a1 ∈ L〈σ〉, b0 ∈ L〈σ
2,τ〉, and b1 ∈ L〈σ

2,τσ3〉.

Proof. Following [1, Example 6.12], let

x = a0 + a1σ + a2σ
2 + a3σ

3 + b0τ + b1τσ + b2τσ
2 + b3τσ

3

be an element of LD4 for some a0, a1, a2, a3, b0, b1, b2, b3 ∈ L.
Then the elements in Hλ are precisely those x for which τ(x) = x
and σ(x) = x . �



5. Application to D3

Let L/Q be a Galois extension with group D3. Necessarily,
L = Q(α,

√
D), where α is a root of a reduced irreducible cubic

p(x) = x3 + bx − c over Q, and D = −4b3 − 27c2 is the
discriminant of p(x). Note that D is not a square in Q.

We have two Hopf-Galois structures on L/Q, one is the classical
Hopf-Galois structure via the Q-Hopf algebra Q[D3], and the other
is the canonical Hopf-Galois structure via the Q-Hopf algebra Hλ.



By Theorem 6, Hλ ∼= Q[D3] as Q-algebras.

And by a well-known result, the Wedderburn-Artin decomposition
of Q[D3] is

Q×Q×Mat2(Q).

Thus, the decomposition of Hλ is

Q×Q×Mat2(Q).



So, Hλ contains a non-trivial nilpotent element h of index 2

(corresponding to the matrix

(
0 1
0 0

)
in the component Mat2(Q).)

We have:
h2 = 0, h 6= 0.

But as we have seen in Example 8 above, this element must be of
the form

h = a0 + a1σ + τ(a1)σ2 + b0τ + σ(b0)τσ + σ2(b0)τσ2,

for some a0 ∈ Q, a1 ∈ L〈σ〉, b0 ∈ L〈τ〉.



From this we obtain:

Theorem 10.(Koch, Kohl, Truman, U.) Let L/Q be a Galois
extension with group D3. Then L is the splitting field of an
irreducible cubic x3 + bx − c where −bD is a square in Q.



Proof. As we have seen above, Hλ contains a non-trivial element h
with h2 = 0. By direct computation
h2 =

a20 + a0a1σ + a0τ(a1)σ2 + a0b0τ + a0σ(b0)τσ + a0σ
2(b0)τσ2

+ a0a1σ + a21σ
2 + a1τ(a1) + a1b0τσ

2 + a1σ(b0)τ + a1σ
2(b0)τσ

+ a0τ(a1)σ2 + a1τ(a1) + τ(a21)σ + b0τ(a1)τσ + τ(a1)σ(b0)τσ2

+ τ(a1)σ2(b0)τ

+ a0b0τ + a1b0τσ + b0τ(a1)τσ2 + b20 + b0σ(b0)σ + b0σ
2(b0)σ2

+ a0σ(b0)τσ + a1σ(b0)τσ2 + σ(b0)τ(a1)τ + b0σ(b0)σ2 + σ(b20)

+ σ(b0)σ2(b0)σ

+ a0σ
2(b0)τσ2 + a1σ

2(b0)τ + τ(a1)σ2(b0)τσ + b0σ
2(b0)σ

+ σ(b0)σ2(b0)σ2 + σ2(b20).



Hence,

h2 = Z1 + Zσσ + Zσ2σ2 + Zττ + Zτστσ + Zτσ2τσ2 = 0,

where

Z1 = a20 + 2a1τ(a1) + b20 + σ(b20) + σ2(b20)

Zσ = 2a0a1 + τ(a21) + b0σ(b0) + σ(b0)σ2(b0) + b0σ
2(b0)

Zσ2 = 2a0τ(a1) + a21 + b0σ(b0) + σ(b0)σ2(b0) + b0σ
2(b0)

Zτ = 2a0b0 + (a1 + τ(a1))σ(b0) + (a1 + τ(a1))σ2(b0)

Zτσ = 2a0σ(b0) + (a1 + τ(a1))b0 + (a1 + τ(a1))σ2(b0)

Zτσ2 = 2a0σ
2(b0) + (a1 + τ(a1))b0 + (a1 + τ(a1))σ(b0).

Thus

Z1 = Zσ = Zσ2 = Zτ = Zτσ = Zτσ2 = 0,

and from this system, the result follows. �



Example 11. Let L be the splitting field of x3 − 2 over Q. Then
L/Q is Galois with group D3. Here, D = −108 which is not a
square in Q. However, −bD = 0 · −108 = 0 is a square in Q.

Hλ contains the non-trivial nilpotent element of index 2:

h =
3
√

2τ +
3
√

2ζ3τσ +
3
√

2ζ23τσ
2.



Example 12. Let L be the splitting field of p(x) = x3 + 23x − 529
over Q. As one can check, p(x) is irreducible over Q, and
D = −7604375 is not a square in Q. Hence L/Q is Galois with
group D3. Now

−bD = 174900625 = 132252.

The splitting field of p(x) is L = Q(b0,
√
−23), where b0 is a root

of p(x). Moreover, Hλ contains the non-trivial nilpotent index 2
element

h =
√
−23σ −

√
−23σ2 + b0τ + σ(b0)τσ + σ2(b0)τσ2.



Example 13. Let p(x) = x3−4x + 1. Then p(x) is irreducible with
D = 229 and so the splitting field of p(x) over Q is Galois with
group D3. However, −bD = 4 · 229, which is not a square in Q.

By Theorem 6,
Hλ ∼= Q×Q×Mat2(Q),

and hence Hλ contains a non-trivial nilpotent element h with
h2 = 0.

Theorem 10 tells us how to construct from this h an irreducible
cubic x3 + b′x − c ′ with discriminant D′ whose splitting field is the
same as that of p(x), and which satisfies −b′D′ a square in Q.



6. Application to D4

Let L/Q be Galois with group D4. By (Curtis and Reiner)

Q[D4] ∼= Q×Q×Q×Q×Mat2(Q),

and so, by Theorem 6,

Hλ ∼= Q×Q×Q×Q×Mat2(Q).



The lattice of fixed fields is:

��
��

��
��

L PPPPPPPP��
��
� HHH

HH
L〈τ〉 L〈τσ

2〉 L〈σ
2〉 L〈τσ

3〉 L〈τσ〉

@
@
@

L〈σ
2,τ〉
��

�
��

L〈σ〉 L〈σ
2,τσ3〉

HHH
HH �

�
�

HH
HHH ��

�
��

Q



Note that L〈σ
2〉 is the unique biquadratic extension of Q contained

in L.

We have L〈σ
2〉 = Q(α, β) with L〈σ

2,τ〉 = Q(β), L〈σ〉 = Q(α) and
L〈σ

2,τσ3〉 = Q(αβ).

Thus b0 = b0,1 + b0,2β, a1 = a1,1 + a1,2α, and b1 = b1,1 + b1,2αβ
for some b0,1, b0,2, a1,1, a1,2, b1,1, b1,2 ∈ Q.

We have σ(b0) = b0,1 − b0,2β, σ(b1) = b1,1 − b1,2αβ, and
τ(a1) = a1,1 − a1,2α.



Lemma 14. The component Mat2(Q) in the decomposition of
Hλ has Q-basis

{(1− σ2)/2, α(σ − σ3), β(τ − τσ2), αβ(τσ − τσ3)}.

Proof. The idempotents corresponding to the 4 copies of Q in the
decomposition of Hλ are ei = 1

8

∑
s∈D4

χi (s
−1)s, 1 ≤ i ≤ 4, where

χi are the characters of the 4 1-dimensional irreducible
representations of D4 (each ei is in LD4 and is fixed by D4, hence
ei ∈ Hλ,4).

The idempotent corresponding to the component Mat2(Q) is

e = 1−
4∑

i=1

ei =
1− σ2

2
.

By Lemma 9, a typical element of Hλ appears as

h = a0+a1σ+a2σ
2+τ(a1)σ3+b0τ+b1τσ+σ(b0)τσ2+σ(b1)τσ3,

where a0, a2 ∈ Q, a1 ∈ L〈σ〉, b0 ∈ L〈σ
2,τ〉, and b1 ∈ L〈σ

2,τσ3〉.



Thus a typical element of Mat2(Q) is

eh =

(
1− σ2

2

)(
a0 + a1σ + a2σ

2 + τ(a1)σ3 + b0τ + b1τσ

+ σ(b0)τσ2 + σ(b1)τσ3
)

= q

(
1− σ2

2

)
+ a1,2α(σ − σ3) + b0,2β(τ − τσ2)

+ b1,2αβ(τσ − τσ3),

for q, a1,2, b0,2, b1,2 ∈ Q. Thus

{(1− σ2)/2, α(σ − σ3), β(τ − τσ2), αβ(τσ − τσ3)}

is a Q-basis for Mat2(Q). �



Theorem 15. Let L/Q be a Galois extension with group D4.
Then there exists a non-trivial solution (b, c, d) in Q of the
equation

b2α2 = c2β2 + d2α2β2, (1)

where Q(α, β)/Q is the unique biquadratic extension contained in
L, with α2, β2 ∈ Q.

Proof. By Lemma 14, the component Mat2(Q) has Q-basis

{(1− σ2)/2, α(σ − σ3), β(τ − τσ2), αβ(τσ − τσ3)}.

Put 1 := (1− σ2)/2, X := α(σ − σ3), Y := β(τ − τσ2), and
Z := αβ(τσ − τσ3).



Then we have the multiplication table:

1 X Y Z

1 1 X Y Z
X X −4α2 −2Z 2α2Y
Y Y 2Z 4β2 2β2X
Z Z −2α2Y −2β2X 4α2β2



Clearly, Mat2(Q) ⊆ Hλ contains an element h ∈ with h2 = 0 and
h 6= 0. Write

h = a + bX + cY + dZ ,

for a, b, c , d ∈ Q. Then

h2 = (a + bX + cY + dZ )(a + bX + cY + dZ )

= (a2 − 4b2α2 + 4c2β2 + 4d2α2β2) + 2abX + 2acY + 2adZ

= 0,

and so,



a2 + 4c2β2 + 4d2α2β2 = 4b2α2

2ab = 0

2ac = 0

2ad = 0.

If a 6= 0, then b = c = d = 0, hence a2 = 0, which is impossible.
So we assume that a = 0.

It follows that h2 = 0, h 6= 0, implies that there is a non-trivial
solution (b, c , d) to

b2α2 = c2β2 + d2α2β2.

Moreover, h is non-trivial if and only if (b, c , d) is non-trivial. �



Example 16. Let L be the splitting field of x4 − 2 over Q. By [3,
Corollary 4.5], the Galois group is D4. We have L = Q( 4

√
2, i) with

σ(i) = i , σ( 4
√

2) = −i 4
√

2, τ(i) = −i , and τ( 4
√

2) = 4
√

2. The
lattice of the unique biquadratic extension is

Q(
√

2, i)

Q(
√

2)
��

�
��

Q(i) Q(i
√

2)

HHH
HH

HH
HHH ��

�
��

Q



where L〈σ
2〉 = Q(

√
2, i) is the unique biquadratic extension in L

with quadratic subfields L〈σ
2,τ〉 = Q(

√
2), L〈σ〉 = Q(i), and

L〈σ
2,τσ3〉 = Q(i

√
2). We choose β =

√
2, α = i . Then equation

(1) is
−b2 = 2c2 − 2d2,

which has a non-trivial solution (b, c , d) = (0, 1, 1). The
corresponding element h ∈ Mat2(Q) is

h =
√

2(τ − τσ2) + i
√

2(τσ − τσ3),

which satisfies h2 = 0, h 6= 0.



Example 17. Let f (x) = x4 − 4x2 − 3. Then p(x) = f (x − 1) is
irreducible over Q, by the Eisenstein criterion, and hence f (x) is
irreducible over Q. By [3, Corollary 4.5] the Galois group of the
splitting field of f (x) is D4. Note that the discriminant satisfies

D = −37632 = −3 · 12544 = −3 · 1122 = −147 · 162.

The roots of f (x) are√
2 +
√

7,

√
2−
√

7, −
√

2 +
√

7, −
√

2−
√

7.

The splitting field over Q is L = Q(
√

2 +
√

7, i
√

3). The Galois
action is given by

σ

(√
2 +
√

7

)
=

√
2−
√

7, σ

(√
2−
√

7

)
= −

√
2 +
√

7,

τ

(√
2 +
√

7

)
=

√
2 +
√

7, τ

(√
2−
√

7

)
= −

√
2−
√

7,

σ(i
√

3) = τ(i
√

3) = −i
√

3.



The unique biquadratic extension contained in L is
Q(
√

7, i
√

3) = Q(
√

7, i
√

21), with lattice

Q(
√

7, i
√

21)

Q(
√

7)
��

�
��

Q(i
√

21) Q(i
√

147)

H
HHHH

HHH
HH ��

�
��

Q



where L〈σ
2〉 = Q(

√
7, i
√

21), with quadratic subfields
L〈σ

2,τ〉 = Q(
√

7), L〈σ〉 = Q(i
√

21), and
L〈σ

2,τσ3〉 = Q(i
√

37632) = Q(i
√

147) = Q(i
√

3), see [3, proof of
Theorem 4.1]. Let β =

√
7, α = i

√
21. Then equation (1) is

−21b2 = 7c2 − 147d2,

which has non-trivial solution (b, c, d) = (1, 9, 2). Thus

i
√

21(σ − σ3) + 9
√

7(τ − τσ2) + 2i
√

147(τσ − τσ3)

is a non-trivial nilpotent element of index 2 in Hλ.



7. Application to a Result of Ledet
We obtain a new proof of the following result of A. Ledet [6, 0.4]:

Theorem 18.(Ledet) Let L/Q be a Galois extension with group
D4. Let Q(α, β)/Q be the unique biquadratic extension contained
in L. Then β2α2 is a norm in Q(β)/Q.

Proof. By Theorem 15 there exists a non-trivial solution (b, c , d) in
Q to the equation

b2α2 = c2β2 + d2α2β2.

Assuming c 6= 0, α 6= 0, we have

b2

c2
− d2

c2
β2 =

β2

α2
,

thus β2

α2 is a norm in Q(β)/Q. Consequently, β2α2 is a norm in
Q(β)/Q. �



Ledet’s result also gives another proof of Greither’s result
(Theorem 6) in the case G = D4:

Theorem 19. Let L/Q be a Galois extension with group D4. Then

Hλ ∼= Q×Q×Q×Q×Mat2(Q).

Proof. Regardless of Greither’s result, we always have

Hλ ∼= Q×Q×Q×Q×Matr (R),

where 1 ≤ r ≤ 2 and R is some division ring.



Now, L/Q is a solution to the “Galois theoretical embedding
problem” given by Q(α, β)/Q and the short exact sequence

1→ 〈σ2〉 → D4 → C2 × C2 → 1.

So by [6, 0.4], β2α2 is a norm in Q(β)/Q, that is, there exist
x , y ∈ Q so that

x2 − y2β2 = β2α2.

Thus,
x2 = β2α2 + y2β2, or

x2α2 = α4β2 + y2α2β2.

Let b = x , c = α2, d = y . Then

bX + cY + dZ

is a non-trivial nilpotent of index 2 in Hλ, thus

Hλ ∼= Q×Q×Q×Q×Mat2(Q).
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