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1. Introduction
Assume Q C K and let L/K be a Galois extension with
non-abelian group G.
Then L/K admits both a classical and canonical non-classical
Hopf-Galois structure via the Hopf algebras K[G] and H,,
respectively.

By a theorem of C. Greither, K[G] = H, as K-algebras.

In this talk we apply Greither's result to the case K = Q, G = Ds
to yield a characterization of Galois extensions with group Ds.

In the case G = Dy, Greither's theorem has implications for a
result of A. Ledet.



2. Hopf Galois theory

We recall the notion of a Hopf algebra, a Hopf-Galois extension,
and the Greither-Pareigis classification.

A bialgebra over a field K is a K-algebra B together with
K-algebra maps A : B — B ® B (comultiplication) and
€ : B — K (counit) which satisfy the conditions

(19 A)A = (A® DA,

mult(/ ® e)A = | = mult(e ® 1) A,

where mult : B ®k B — B is the multiplication map of B and / is
the identity map on B.



A Hopf algebra over K is a K-bialgebra H with a K-linear map
o : H — H which satisfies

mult(/ ® o)A(h) = e(h)1y = mult(c ® I)A(h),
for all h € H.

A K-Hopf algebra H is cocommutative if A = 70 A, where
T:HRxk H—= H®Kk H, a® b— b® ais the twist map.



Let L be a finite extension of K and let m : L ® L — L denote
multiplication in L.

Let H be a finite dimensional, cocommutative K-Hopf algebra and
suppose there is a K-linear action of H on L which satisfies

forall h€ H, x,y € L, and that the K-linear map
Jj Lok H— Endk(L), j(x® h)(y) =x(h-y)

is an isomorphism of vector spaces over K. Then we say H
provides a Hopf-Galois structure on L/K.



Example 1. Suppose L/K is Galois with Galois group G. Let
H = K[G] be the group algebra, which is a Hopf algebra via
Alg)=g®g, e(g) =1, 0(g) =g L forall g € G. The action

(D re8) x =" relg(x))

provides the “usual” Hopf-Galois structure on L/K which we call
the classical Hopf-Galois structure.

In general, the process of finding a Hopf algebra and constructing
an action may seem daunting, but in the separable case C. Greither
and B. Pareigis [4] have provided a complete classification of such
structures.



Let L/K be separable with normal closure E. Let G = Gal(E/K),
G’ = Gal(E/L), and X = G/G’. Denote by Perm(X) the group of
permutations of X.

A subgroup N < Perm(X) is regular if |N| = |X| and
N[xG'] # xG’ for all n # 1y, xG" € X.

Let A : G — Perm(X), A(g)(xG') = gxG’, denote the left
translation map. A subgroup N < Perm(X) is normalized by
A(G) < Perm(X) if A(G) is contained in the normalizer of N in
Perm(X).



Theorem 2. (Greither-Pareigis) Let L/K be a finite separable
extension. There is a one-to-one correspondence between Hopf
Galois structures on L/K and regular subgroups of Perm(X) that
are normalized by \(G).

One direction of this correspondence works by Galois descent: Let
N be a regular subgroup normalized by A(G). Then G acts on the
group algebra E[N] through the Galois action on E and
conjugation by A\(G) on N, i.e,,

g(xn) = g(x)(Mg)nA(g")).g € G, x€ E, neN.

For simplicity, we will denote the conjugation action of
A(g) € A(G) onn € N by &n.

We then define

H = (E[N]))® = {x € E[N] : g(x)=x,Vg € G}.



The action of H on L/K is thus

(Z rn") x =) Le] (%),

neN neN
see [2, Proposition 1].
The fixed ring H is an n-dimensional K-Hopf algebra, n = [L: K],
and L/K has a Hopf Galois structure via H [4, p. 248, proof of 3.1
(b)= (a)], [1, Theorem 6.8, pp. 52-54].
By [4, p. 249, proof of 3.1, (a) = (b)],

as E-Hopf algebras, that is, H is an E-form of K[N].



Theorem 2 can be applied to the case where L/K is Galois with
group G (thus, E =L, G'=1¢g, G/G' = G). In this case the
Hopf Galois structures on L/K correspond to regular subgroups of
Perm(G) normalized by A(G), where A : G — Perm(G),

A(g)(h) = gh, is the left regular representation.



Example 3. Suppose L/K is a Galois extension, G = Gal(L/K).
Let p: G — Perm(G) be the right regular representation defined
as p(g)(h) = hg=! for g,h € G. Then p(G) is a regular subgroup
normalized by A\(G), since A\(g)p(h)A(g1) = p(h) for all g, h € G;
N corresponds to a Hopf-Galois structure with K-Hopf algebra

H = L[p(G)]® = K[G], the usual group ring Hopf algebra with its
usual action on L. Consequently, p(G) corresponds to the classical
Hopf Galois structure.

Example 4. Again, suppose L/K is Galois with group G. Let

N = A(G). Then N is a regular subgroup of Perm(G) which is
normalized by A(G), and N = p(G) if and only if N abelian. We
denote the corresponding Hopf algebra by H,. If G is non-abelian,
then A(G) corresponds to the canonical non-classical Hopf-Galois
structure.



3. Isomorphism Classes

It is of interest to determine how K[G] and H, fall into K-Hopf
algebra and K-algebra isomorphism classes. We have:

Theorem 5. (Koch, Kohl, Truman, U.) Assume that G is
non-abelian. Then Hy % K[G]| as K-Hopf algebras.

Proof. Over L, K[G] and H) are isomorphic to L[G] as Hopf
algebras, thus their duals K[G]* and H are finite dimensional as
algebras over K and separable (as defined in [8, 6.4, page 47]).
Using the classification of such K-algebras [8, 6.4, Theorem]|, we
conclude that K[G]* and Hj are not isomorphic as K-Hopf
algebras, and so neither are K[G] and H,. In fact, by [8, 6.3,
Theorem], K[G]* and Hj are not isomorphic as K-algebras, and
consequently, K[G] and H) are not isomorphic as K-coalgebras. [



On the other hand, C. Greither has shown that following.

Theorem 6. (Greither) H) = K[G] as K-algebras.

Proof. (Sketch.)

Step 1. Obtain the Wedderburn-Artin decomposition of K[G], thus:
K[G] = A1 x Ay X -+ X Am,

where A; = Mat,, (E;) for division rings E;.

Step 2. Show that the action of G on L[G] restricts to an action
on the components L ® A; of L[G] = L ®k K[G], and hence each
component L ® A; descends to a component S; in the
Wedderburn-Artin decomposition of Hy; (supressing subscripts) S
is an L-form of A.



Step 3. L-forms of A are clafsified by the pointed set
HY(G, Aut(L ®k A)). Let [f] be the class corresponding to the
class of S.

Step 4. There exists a map in cohomology
V: HYG, GL,(L ®k E)) — HY(G,Inn(L ®k A))

with [f] € HY(G,Inn(L @k A)). Moreover, there exists a class
[4] € HY(G, GLa(L @k E)) with W([4]) = [f].

Step 5. By Hilbert's Theorem 90 (or its generalization)
HY(G, GL,(L ®k E)) is trivial, hence [f] is trivial, so S = A as
K-algebras, thus Hy = K[G] as K-algebras. O



4. Dihedral Extensions

Let D, denote the dihedral group of order 2n for n > 3. Explicitly,
we write
Dn=(o,7:0"=12=070T =1).

Let L/K be a Galois extension with group D,,.
By Example 3 and Example 4 we have regular subgroups
p(Dp), A(Dp) normalized by A(D,).

These regular subgroups give rise to the classical and canonical
non-classical Hopf-Galois structures on L/K via the K-Hopf
algebras K[D,] and H,, respectively.



Example 7. In the case L/K is Galois with group D,, the classical
Hopf-Galois structure on L/K has K-Hopf algebra

n—1 1

K[Dn]: Zza,‘,jdi’i'ji a;JGK

i=0 j=0

Example 8. In the case L/K is Galois with group D3, then by [1,
Example 6.12], the canonical non-classical Hopf-Galois structure
on L/K has K-Hopf algebra

Hy = {ao + a10 + 7(a1)0? + bo7 + a(bo) 70 + 0?(bo)T0? :

ap € Q,al S L<U>, bo S L<T>}.



Lemma 9. Let L/Q be a Galois extension with group Dy. Then
Hy, consists of elements of the form

h = ag+a10+ax0° +7(a1)0> 4 boT + byro + 0 (bo)T0* + 0 (by)T03,
where ag,a> € Q, a1 € L), by € L<"277>, and by € L{o?7o%).
Proof. Following [1, Example 6.12], let

X = ag + a0 + apo? + az0° + byt + by70 + by10? + 3703

be an element of LD, for some ag, a1, az, as, by, b1, by, b3 € L.
Then the elements in H) are precisely those x for which 7(x) = x
and o(x) = x. O



5. Application to Dj

Let L/Q be a Galois extension with group D3. Necessarily,

L =Q(a, \/TD) where « is a root of a reduced irreducible cubic
p(x) = x3 4 bx — c over Q, and D = —4b> — 27c? is the
discriminant of p(x). Note that D is not a square in Q.

We have two Hopf-Galois structures on L/Q, one is the classical
Hopf-Galois structure via the Q-Hopf algebra Q[Ds], and the other
is the canonical Hopf-Galois structure via the Q-Hopf algebra H).



By Theorem 6, Hy = Q[Dj3] as Q-algebras.

And by a well-known result, the Wedderburn-Artin decomposition
of Q[Ds] is

Q x Q x Mat,(Q).

Thus, the decomposition of H) is

Q x Q x Mat,(Q).



So, H) contains a non-trivial nilpotent element h of index 2

. . (0 1Y.
(corresponding to the matrix <0 0) in the component Mat(Q).)

We have:
h>=0, h#0.

But as we have seen in Example 8 above, this element must be of
the form
h=ag + a1o + 7(a1)o® + bo7 + o (bo)T0o + 0?(bo)T0?,

for some ag € Q, a1 € L9, by € L(7).



From this we obtain:

Theorem 10.(Koch, Kohl, Truman, U.) Let L/Q be a Galois
extension with group D3. Then L is the splitting field of an
irreducible cubic x3 + bx — ¢ where —bD is a square in Q.



Proof. As we have seen above, H) contains a non-trivial element h
with h> = 0. By direct computation
h? =

8(2) + agairo + 307(31)02 + agbpT + aoU(bo)TU + 3002(b0)702

+ agar0 + a30% 4 ay7(a1) + a1boro? + aro(bo)T + a10%(bo) T
+ ag7(a1)o? + a17(a1) + 7(a2)o + bor(a1)7o + 7(a1)o(bo)To?
+ 7(a1)o?(bo)T
+ aogboT + a1boTo + bor(a1)T0? 4 b + boo(bo)o + boo?(bo)o?
+ aga(bo)To + aro(bo)Ta? + o (bo)7(a1)T + boa(bo)o? + o(b3)
+ o(bo)a?(bo)o
+ ago?(bo)T0o? 4 a10°(bo)T + 7(a1)0? (bo)To + boo?(bo)o
+ o (bo)o?(bo)o? + a(b3).



Hence,

W =21+ 2,0+ 220>+ Z:7+ Zror0 + Z, 270° = 0,

where
Z1 = a3+ 2a17(a1) + b§ + o(b3) + o*(bF)
Zy, = 2apa + T(a%) + boO’( 0) + 0( ) (bo) + b002 bo)
Zyo = 2307(31) + a% + boU(b ) + U( ) (bo) + b002 bo)
Z, = 2agbg + (31 + T(al)) (bo) + (31 + 7’(31))0
Zig = ana(bo) (31 + T(al))bo + (31 + T(al))
Z.» = 2ag0%(bo)+ (a1 + 7(a1))bo + (a1 + 7(a1))o
Thus

Z1=2Z,=22=2; =21y =252 =0,

and from this system, the result follows.



Example 11. Let L be the splitting field of x3 — 2 over Q. Then
L/Q is Galois with group D3. Here, D = —108 which is not a
square in Q. However, —bD = 0-—108 = 0 is a square in Q.

H), contains the non-trivial nilpotent element of index 2:

h =27 + V270 + \%@2702.



Example 12. Let L be the splitting field of p(x) = x3 + 23x — 529
over Q. As one can check, p(x) is irreducible over Q, and

D = —7604375 is not a square in Q. Hence L/Q is Galois with
group D3. Now

—bD = 174900625 = 132252,

The splitting field of p(x) is L = Q(bo, v/ —23), where by is a root
of p(x). Moreover, Hy contains the non-trivial nilpotent index 2
element

h= /=230 — /2302 + bo + o(bo)T0 + 0?(bo)TT>.



Example 13. Let p(x) = x3 —4x+ 1. Then p(x) is irreducible with
D = 229 and so the splitting field of p(x) over Q is Galois with
group D3. However, —bD = 4 - 229, which is not a square in Q.

By Theorem 6,
Hy = Q x Q x Mat,(Q),

and hence H) contains a non-trivial nilpotent element h with
h? = 0.

Theorem 10 tells us how to construct from this h an irreducible
cubic x3 + b'x — ¢’ with discriminant D’ whose splitting field is the
same as that of p(x), and which satisfies —b'D’ a square in Q.



6. Application to D,

Let L/Q be Galois with group D4. By (Curtis and Reiner)

Q[D4] ZQ x Q@ x Q x Q x Mat,(Q),

and so, by Theorem 6,

Hy,=QxQ x Q x Q x Mat(Q).



The lattice of fixed fields is:




Note that L") is the unique biquadratic extension of (Y contained
in L.

We have L% = Q(a, B) with L") = Q(B), L = Q(a) and
L o TO' Q(QB)

Thus by = b071 + b0725, ay =ai1+ aipaq, and by = b171 + b172045
for some bo 1, bo2,a1,1,a12, b1,1,b12 € Q.

We have U(bo) = bO,l — b()gﬁ, O'(bl) = b171 — bl,zaﬁ, and
7'(31) = 41,1 — da1,20v.



Lemma 14. The component Maty(Q) in the decomposition of
H) has Q-basis

{(1 - 02)/27 CY(O' - 03)7 B(T - 702)7 aﬂ(TU - 703)}'
Proof. The idempotents corresponding to the 4 copies of Q in the
decomposition of H) are ¢; = %Zsem xi(s71)s, 1 < i < 4, where
X; are the characters of the 4 1-dimensional irreducible

representations of Dy (each e; is in LDy and is fixed by Dy, hence
€ € H)\74).

The idempotent corresponding to the component Maty(Q) is

ezl—Ze;zl_;f.

By Lemma 9, a typical element of H, appears as

h = ag+a10+axo?+7(a1)o>+ bor + byro +o(by)r0* + 0 (b1 )03,

where ag, a2 € Q, a1 € L@, by € L*7), and by € L3707,



Thus a typical element of Maty(Q) is

1— 2
eh = < 20)(ao+310+3202+7’(31)03+b07'+b170

+ o(bo)T0? + o(b1)T0?)

1— o2 3 5
= gq + a1 20(0 — 0°) + by 2B(T — T07)

2
+ bisaf5(T0 — 7'03),

for q,a1,2, bo72, b172 € Q. Thus
{(1- 02)/2, alo — 03), B(r — 702), af(ro — 7'03)}

is a Q-basis for Mat»(Q).



Theorem 15. Let L/Q be a Galois extension with group Da.
Then there exists a non-trivial solution (b, c,d) in Q of the
equation

b2a2 — C262 + d2042,82, (1)

where Q(a, 8)/Q is the unique biquadratic extension contained in
L, with o?, 3% € Q.

Proof. By Lemma 14, the component Mat,(Q) has Q-basis

{(1=0%)/2,a(c — %), B(t — 10?),aB(r0 — T03)}.

Put1:=(1-0?)/2, X :=a(oc —0c3), Y = B(r — 70?), and
Z = af(ro — 703).



Then we have the multiplication table:

1 X Y Z
1)1 X Y Z
X | X —4a? -27 202Y
Y|Y 2Z 432 232X
Z|Z —2a2Y 282X 40232



Clearly, Mat»(Q) C H, contains an element h € with h*> = 0 and
h # 0. Write
h=a+ bX +cY +dZ,

for a,b,c,d € Q. Then

h? = (a+bX+cY +dZ)(a+bX+cY +d2)
= (a% — 4b%a® + 4c?B% + 4d%a2[?) + 2abX + 2acY + 2adZ
0,

and so,



2+ 4c2F2 + 4?05 = 4b%a?

2ab = 0
2ac = 0
2ad = 0.

If a#0, then b=c=d =0, hence a®> = 0, which is impossible.
So we assume that a = 0.

It follows that h2 =0, h = 0, implies that there is a non-trivial
solution (b, ¢, d) to

b2a2 — C252 + d204252.

Moreover, h is non-trivial if and only if (b, ¢, d) is non-trivial. [



Example 16. Let L be the splitting field of x* — 2 over Q. By [3,
Corollary 4.5], the Galois group is Ds. We have L = Q(v/2, i) with
o(i) =i, o(v2) = —iv/2, (i) = —i, and 7(v/2) = v/2. The

lattice of the unique biquadratic extension is

/\
\/



where L% = Q(v/2, i) is the unique biquadratic extension in L
with quadratic subfields L") = Q(v/2), L@ = Q(i), and
Llo?e®) — Q(iﬁ). We choose 3 = v/2, & = i. Then equation
(1) is

—b% =2c% - 2d°,
which has a non-trivial solution (b, c,d) = (0,1,1). The
corresponding element h € Maty(Q) is

h=V2(r —16%) + iV2(ro — T0%),

which satisfies h> = 0, h # 0.



Example 17. Let f(x) = x* —4x?> — 3. Then p(x) = f(x — 1) is
irreducible over Q, by the Eisenstein criterion, and hence f(x) is
irreducible over Q. By [3, Corollary 4.5] the Galois group of the
splitting field of f(x) is Ds. Note that the discriminant satisfies

D= 37632 = —3-12544 = —3.112%2 = —147 - 16°.
The roots of f(x) are
\/2+xf7, \/2—\ﬁ, —\/Z—i—ﬁ, —\/2—ﬁ.
The splitting field over Q is L = Q(v/2 4+ v/7,iv/3). The Galois

action is given by
a<\/2+f7> = \/2—\ﬁ, a<ﬁ> :—m,

T<\/2+ﬁ>:\/2+xﬁ, r< 2—\ﬁ>=— 21,
o(iv3) = 7(iV3) = —iV3.




The unique biquadratic extension contained in L is

Q(V7,iv3) = Q(\/7,iv/21), with lattice

Q(V7,iv?21)

T

QWT)  Q(iv2l) Q(iV147)

\/

Q



where L{7*) = Q(v/7,i/21), with quadratic subfields

L) = Q(v7), L' = Q(iv21), and

Lo — Q(iv/37632) = Q(iv/147) = Q(iv/3), see [3, proof of
Theorem 4.1]. Let 3 = /7, o = iv/21. Then equation (1) is

—21b% = 7c? — 147d?,
which has non-trivial solution (b, c,d) = (1,9,2). Thus
iV21(o — 03) + 9V7(r — 76°) + 2iV147 (10 — T03)

is a non-trivial nilpotent element of index 2 in H.



7. Application to a Result of Ledet
We obtain a new proof of the following result of A. Ledet [6, 0.4]:

Theorem 18.(Ledet) Let L/Q be a Galois extension with group
Ds. Let Q(a, B)/Q be the unique biquadratic extension contained
in L. Then 3%2a2 is a norm in Q(3)/Q.

Proof. By Theorem 15 there exists a non-trivial solution (b, ¢, d) in
Q to the equation

b?a? = 252 + d?a?.
Assuming ¢ # 0, a # 0, we have
bj _ 1252 —

c2 2

52
?a
thus 22 is a norm in Q(B)/Q. Consequently, 3%a? is a norm in

o?

Q(8)/Q. O



Ledet’s result also gives another proof of Greither's result
(Theorem 6) in the case G = Dj:

Theorem 19. Let L/Q be a Galois extension with group Ds. Then

Hy =2 Q xQ x Q x Q x Mat(Q).

Proof. Regardless of Greither's result, we always have

Hy =2 Q x Qx Q x Q x Mat,(R),

where 1 < r < 2 and R is some division ring.



Now, L/Q is a solution to the “Galois theoretical embedding
problem” given by Q(«, 3)/Q and the short exact sequence

1= (0% =Dy — GxC—1.

So by [6, 0.4], 3%a? is a norm in Q(B3)/Q, that is, there exist
x,y € Q so that
X2 _yZﬁZ — 52042.

Thus,

X2 — 52062 +y262a or

x2a? = o*B? + y2a? 3.
Let b= x, ¢ = a?, d=y. Then

bX 4+ cY +dZ

is a non-trivial nilpotent of index 2 in H), thus

Hy, =2 Q xQx Q x Q x Mat(Q).
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