Hopf-Galois Structures and a Characterization of Dihedral Extensions

Robert G. Underwood
Department of Mathematics and Computer Science
Auburn University at Montgomery
Montgomery, Alabama

May 23, 2018

This is joint work with:

Alan Koch
 Agnes Scott College, Decatur, GA

Timothy Kohl
Boston University, MA

Paul J. Truman
Keele University, Staffordshire, UK

1. Introduction

Assume $\mathbb{Q} \subseteq K$ and let L / K be a Galois extension with non-abelian group G.

Then L / K admits both a classical and canonical non-classical Hopf-Galois structure via the Hopf algebras $K[G]$ and H_{λ}, respectively.

By a theorem of C. Greither, $K[G] \cong H_{\lambda}$ as K-algebras.
In this talk we apply Greither's result to the case $K=\mathbb{Q}, G=D_{3}$ to yield a characterization of Galois extensions with group D_{3}.

In the case $G=D_{4}$, Greither's theorem has implications for a result of A. Ledet.

2. Hopf Galois theory

We recall the notion of a Hopf algebra, a Hopf-Galois extension, and the Greither-Pareigis classification.

A bialgebra over a field K is a K-algebra B together with K-algebra maps $\Delta: B \rightarrow B \otimes_{K} B$ (comultiplication) and $\varepsilon: B \rightarrow K$ (counit) which satisfy the conditions

$$
\begin{gathered}
(I \otimes \Delta) \Delta=(\Delta \otimes I) \Delta \\
\operatorname{mult}(I \otimes \varepsilon) \Delta=I=\operatorname{mult}(\varepsilon \otimes I) \Delta,
\end{gathered}
$$

where mult : $B \otimes_{k} B \rightarrow B$ is the multiplication map of B and I is the identity map on B.

A Hopf algebra over K is a K-bialgebra H with a K-linear map $\sigma: H \rightarrow H$ which satisfies

$$
\operatorname{mult}(I \otimes \sigma) \Delta(h)=\varepsilon(h) 1_{H}=\operatorname{mult}(\sigma \otimes I) \Delta(h),
$$

for all $h \in H$.

A K-Hopf algebra H is cocommutative if $\Delta=\tau \circ \Delta$, where $\tau: H \otimes_{K} H \rightarrow H \otimes{ }_{K} H, a \otimes b \mapsto b \otimes a$ is the twist map.

Let L be a finite extension of K and let $\mathrm{m}: L \otimes_{K} L \rightarrow L$ denote multiplication in L.

Let H be a finite dimensional, cocommutative K-Hopf algebra and suppose there is a K-linear action of H on L which satisfies

$$
\begin{aligned}
h \cdot(x y) & =(m \circ \Delta)(h)(x \otimes y) \\
h \cdot 1 & =\varepsilon(h) 1
\end{aligned}
$$

for all $h \in H, x, y \in L$, and that the K-linear map

$$
j: L \otimes_{K} H \rightarrow \operatorname{End}_{K}(L), j(x \otimes h)(y)=x(h \cdot y)
$$

is an isomorphism of vector spaces over K. Then we say H provides a Hopf-Galois structure on L / K.

Example 1. Suppose L / K is Galois with Galois group G. Let $H=K[G]$ be the group algebra, which is a Hopf algebra via $\Delta(g)=g \otimes g, \varepsilon(g)=1, \sigma(g)=g^{-1}$, for all $g \in G$. The action

$$
\left(\sum r_{g} g\right) \cdot x=\sum r_{g}(g(x))
$$

provides the "usual" Hopf-Galois structure on L / K which we call the classical Hopf-Galois structure.

In general, the process of finding a Hopf algebra and constructing an action may seem daunting, but in the separable case C. Greither and B. Pareigis [4] have provided a complete classification of such structures.

Let L / K be separable with normal closure E. Let $G=\operatorname{Gal}(E / K)$, $G^{\prime}=\operatorname{Gal}(E / L)$, and $X=G / G^{\prime}$. Denote by $\operatorname{Perm}(X)$ the group of permutations of X.

A subgroup $N \leq \operatorname{Perm}(X)$ is regular if $|N|=|X|$ and $\eta\left[x G^{\prime}\right] \neq x G^{\prime}$ for all $\eta \neq 1_{N}, x G^{\prime} \in X$.

Let $\lambda: G \rightarrow \operatorname{Perm}(X), \lambda(g)\left(x G^{\prime}\right)=g x G^{\prime}$, denote the left translation map. A subgroup $N \leq \operatorname{Perm}(X)$ is normalized by $\lambda(G) \leq \operatorname{Perm}(X)$ if $\lambda(G)$ is contained in the normalizer of N in $\operatorname{Perm}(X)$.

Theorem 2. (Greither-Pareigis) Let L / K be a finite separable extension. There is a one-to-one correspondence between Hopf Galois structures on L / K and regular subgroups of $\operatorname{Perm}(X)$ that are normalized by $\lambda(G)$.

One direction of this correspondence works by Galois descent: Let N be a regular subgroup normalized by $\lambda(G)$. Then G acts on the group algebra $E[N]$ through the Galois action on E and conjugation by $\lambda(G)$ on N, i.e.,

$$
g(x \eta)=g(x)\left(\lambda(g) \eta \lambda\left(g^{-1}\right)\right), g \in G, x \in E, \eta \in N
$$

For simplicity, we will denote the conjugation action of $\lambda(g) \in \lambda(G)$ on $\eta \in N$ by ${ }^{g} \eta$.

We then define

$$
H=(E[N])^{G}=\{x \in E[N]: g(x)=x, \forall g \in G\}
$$

The action of H on L / K is thus

$$
\left(\sum_{\eta \in N} r_{\eta} \eta\right) \cdot x=\sum_{\eta \in N} r_{\eta} \eta^{-1}\left[1_{G}\right](x)
$$

see [2, Proposition 1].
The fixed ring H is an n-dimensional K-Hopf algebra, $n=[L: K]$, and L / K has a Hopf Galois structure via H [4, p. 248, proof of 3.1 $(\mathrm{b}) \Longrightarrow(\mathrm{a})],[1$, Theorem 6.8, pp. 52-54].

By $[4$, p. 249, proof of $3.1,(\mathrm{a}) \Longrightarrow(\mathrm{b})$],

$$
E \otimes_{K} H \cong E \otimes_{K} K[N] \cong E[N]
$$

as E-Hopf algebras, that is, H is an E-form of $K[N]$.

Theorem 2 can be applied to the case where L / K is Galois with group G (thus, $E=L, G^{\prime}=1_{G}, G / G^{\prime}=G$). In this case the Hopf Galois structures on L / K correspond to regular subgroups of $\operatorname{Perm}(G)$ normalized by $\lambda(G)$, where $\lambda: G \rightarrow \operatorname{Perm}(G)$, $\lambda(g)(h)=g h$, is the left regular representation.

Example 3. Suppose L / K is a Galois extension, $G=\operatorname{Gal}(L / K)$. Let $\rho: G \rightarrow \operatorname{Perm}(G)$ be the right regular representation defined as $\rho(g)(h)=h g^{-1}$ for $g, h \in G$. Then $\rho(G)$ is a regular subgroup normalized by $\lambda(G)$, since $\lambda(g) \rho(h) \lambda\left(g^{-1}\right)=\rho(h)$ for all $g, h \in G$; N corresponds to a Hopf-Galois structure with K-Hopf algebra $H=L[\rho(G)]^{G}=K[G]$, the usual group ring Hopf algebra with its usual action on L. Consequently, $\rho(G)$ corresponds to the classical Hopf Galois structure.

Example 4. Again, suppose L / K is Galois with group G. Let $N=\lambda(G)$. Then N is a regular subgroup of $\operatorname{Perm}(G)$ which is normalized by $\lambda(G)$, and $N=\rho(G)$ if and only if N abelian. We denote the corresponding Hopf algebra by H_{λ}. If G is non-abelian, then $\lambda(G)$ corresponds to the canonical non-classical Hopf-Galois structure.

3. Isomorphism Classes

It is of interest to determine how $K[G]$ and H_{λ} fall into K-Hopf algebra and K-algebra isomorphism classes. We have:

Theorem 5. (Koch, Kohl, Truman, U.) Assume that G is non-abelian. Then $H_{\lambda} \neq K[G]$ as K-Hopf algebras.

Proof. Over $L, K[G]$ and H_{λ} are isomorphic to $L[G]$ as Hopf algebras, thus their duals $K[G]^{*}$ and H_{λ}^{*} are finite dimensional as algebras over K and separable (as defined in [8, 6.4, page 47]). Using the classification of such K-algebras [8, 6.4, Theorem], we conclude that $K[G]^{*}$ and H_{λ}^{*} are not isomorphic as K-Hopf algebras, and so neither are $K[G]$ and H_{λ}. In fact, by $[8,6.3$, Theorem], $K[G]^{*}$ and H_{λ}^{*} are not isomorphic as K-algebras, and consequently, $K[G]$ and H_{λ} are not isomorphic as K-coalgebras. \square

On the other hand, C. Greither has shown that following.
Theorem 6. (Greither) $H_{\lambda} \cong K[G]$ as K-algebras.
Proof. (Sketch.)
Step 1. Obtain the Wedderburn-Artin decomposition of $K[G]$, thus:

$$
K[G] \cong A_{1} \times A_{2} \times \cdots \times A_{m}
$$

where $A_{i}=\operatorname{Mat}_{n_{i}}\left(E_{i}\right)$ for division rings E_{i}.
Step 2. Show that the action of G on $L[G]$ restricts to an action on the components $L \otimes A_{i}$ of $L[G] \cong L \otimes_{K} K[G]$, and hence each component $L \otimes A_{i}$ descends to a component S_{i} in the Wedderburn-Artin decomposition of H_{λ}; (supressing subscripts) S is an L-form of A.

Step 3. L-forms of A are classified by the pointed set $H^{1}\left(G, \operatorname{Aut}\left(L \otimes_{K} A\right)\right)$. Let $[\hat{f}]$ be the class corresponding to the class of S.

Step 4. There exists a map in cohomology

$$
\Psi: H^{1}\left(G, G L_{n}\left(L \otimes_{K} E\right)\right) \rightarrow H^{1}\left(G, \operatorname{Inn}\left(L \otimes_{K} A\right)\right)
$$

with $[\hat{f}] \in H^{1}\left(G, \operatorname{Inn}\left(L \otimes_{K} A\right)\right)$. Moreover, there exists a class $[\hat{q}] \in H^{1}\left(G, G L_{n}\left(L \otimes_{K} E\right)\right)$ with $\Psi([\hat{q}])=[\hat{f}]$.

Step 5. By Hilbert's Theorem 90 (or its generalization) $H^{1}\left(G, G L_{n}\left(L \otimes_{K} E\right)\right)$ is trivial, hence $[\hat{f}]$ is trivial, so $S \cong A$ as K-algebras, thus $H_{\lambda} \cong K[G]$ as K-algebras.

4. Dihedral Extensions

Let D_{n} denote the dihedral group of order $2 n$ for $n \geq 3$. Explicitly, we write

$$
D_{n}=\left\langle\sigma, \tau: \sigma^{n}=\tau^{2}=\sigma \tau \sigma \tau=1\right\rangle
$$

Let L / K be a Galois extension with group D_{n}.
By Example 3 and Example 4 we have regular subgroups $\rho\left(D_{n}\right), \lambda\left(D_{n}\right)$ normalized by $\lambda\left(D_{n}\right)$.

These regular subgroups give rise to the classical and canonical non-classical Hopf-Galois structures on L / K via the K-Hopf algebras $K\left[D_{n}\right]$ and H_{λ}, respectively.

Example 7. In the case L / K is Galois with group D_{n}, the classical Hopf-Galois structure on L / K has K-Hopf algebra

$$
K\left[D_{n}\right]=\left\{\sum_{i=0}^{n-1} \sum_{j=0}^{1} a_{i, j} \sigma^{i} \tau^{j}: a_{i, j} \in K\right\}
$$

Example 8. In the case L / K is Galois with group D_{3}, then by $[1$, Example 6.12], the canonical non-classical Hopf-Galois structure on L / K has K-Hopf algebra

$$
\begin{gathered}
H_{\lambda}=\left\{a_{0}+a_{1} \sigma+\tau\left(a_{1}\right) \sigma^{2}+b_{0} \tau+\sigma\left(b_{0}\right) \tau \sigma+\sigma^{2}\left(b_{0}\right) \tau \sigma^{2}:\right. \\
\left.a_{0} \in \mathbb{Q}, a_{1} \in L^{\langle\sigma\rangle}, b_{0} \in L^{\langle\tau\rangle}\right\} .
\end{gathered}
$$

Lemma 9. Let L / \mathbb{Q} be a Galois extension with group D_{4}. Then H_{λ} consists of elements of the form
$h=a_{0}+a_{1} \sigma+a_{2} \sigma^{2}+\tau\left(a_{1}\right) \sigma^{3}+b_{0} \tau+b_{1} \tau \sigma+\sigma\left(b_{0}\right) \tau \sigma^{2}+\sigma\left(b_{1}\right) \tau \sigma^{3}$, where $a_{0}, a_{2} \in \mathbb{Q}, a_{1} \in L^{\langle\sigma\rangle}, b_{0} \in L^{\left\langle\sigma^{2}, \tau\right\rangle}$, and $b_{1} \in L^{\left\langle\sigma^{2}, \tau \sigma^{3}\right\rangle}$.

Proof. Following [1, Example 6.12], let

$$
x=a_{0}+a_{1} \sigma+a_{2} \sigma^{2}+a_{3} \sigma^{3}+b_{0} \tau+b_{1} \tau \sigma+b_{2} \tau \sigma^{2}+b_{3} \tau \sigma^{3}
$$

be an element of $L D_{4}$ for some $a_{0}, a_{1}, a_{2}, a_{3}, b_{0}, b_{1}, b_{2}, b_{3} \in L$. Then the elements in H_{λ} are precisely those x for which $\tau(x)=x$ and $\sigma(x)=x$.

5. Application to D_{3}

Let L / \mathbb{Q} be a Galois extension with group D_{3}. Necessarily, $L=\mathbb{Q}(\alpha, \sqrt{\mathcal{D}})$, where α is a root of a reduced irreducible cubic $p(x)=x^{3}+b x-c$ over \mathbb{Q}, and $\mathcal{D}=-4 b^{3}-27 c^{2}$ is the discriminant of $p(x)$. Note that \mathcal{D} is not a square in \mathbb{Q}.

We have two Hopf-Galois structures on L / \mathbb{Q}, one is the classical Hopf-Galois structure via the \mathbb{Q}-Hopf algebra $\mathbb{Q}\left[D_{3}\right]$, and the other is the canonical Hopf-Galois structure via the \mathbb{Q}-Hopf algebra H_{λ}.

By Theorem $6, H_{\lambda} \cong \mathbb{Q}\left[D_{3}\right]$ as \mathbb{Q}-algebras.
And by a well-known result, the Wedderburn-Artin decomposition of $\mathbb{Q}\left[D_{3}\right]$ is

$$
\mathbb{Q} \times \mathbb{Q} \times \operatorname{Mat}_{2}(\mathbb{Q})
$$

Thus, the decomposition of H_{λ} is

$$
\mathbb{Q} \times \mathbb{Q} \times \operatorname{Mat}_{2}(\mathbb{Q}) .
$$

So, H_{λ} contains a non-trivial nilpotent element h of index 2 (corresponding to the matrix $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ in the component $\operatorname{Mat}_{2}(\mathbb{Q})$.)

We have:

$$
h^{2}=0, \quad h \neq 0
$$

But as we have seen in Example 8 above, this element must be of the form

$$
h=a_{0}+a_{1} \sigma+\tau\left(a_{1}\right) \sigma^{2}+b_{0} \tau+\sigma\left(b_{0}\right) \tau \sigma+\sigma^{2}\left(b_{0}\right) \tau \sigma^{2}
$$

for some $a_{0} \in \mathbb{Q}, a_{1} \in L^{\langle\sigma\rangle}, b_{0} \in L^{\langle\tau\rangle}$.

From this we obtain:
Theorem 10.(Koch, Kohl, Truman, U.) Let L / \mathbb{Q} be a Galois extension with group D_{3}. Then L is the splitting field of an irreducible cubic $x^{3}+b x-c$ where $-b \mathcal{D}$ is a square in \mathbb{Q}.

Proof. As we have seen above, H_{λ} contains a non-trivial element h with $h^{2}=0$. By direct computation $h^{2}=$

$$
\begin{aligned}
& a_{0}^{2}+a_{0} a_{1} \sigma+a_{0} \tau\left(a_{1}\right) \sigma^{2}+a_{0} b_{0} \tau+a_{0} \sigma\left(b_{0}\right) \tau \sigma+a_{0} \sigma^{2}\left(b_{0}\right) \tau \sigma^{2} \\
& +a_{0} a_{1} \sigma+a_{1}^{2} \sigma^{2}+a_{1} \tau\left(a_{1}\right)+a_{1} b_{0} \tau \sigma^{2}+a_{1} \sigma\left(b_{0}\right) \tau+a_{1} \sigma^{2}\left(b_{0}\right) \tau \sigma \\
& +a_{0} \tau\left(a_{1}\right) \sigma^{2}+a_{1} \tau\left(a_{1}\right)+\tau\left(a_{1}^{2}\right) \sigma+b_{0} \tau\left(a_{1}\right) \tau \sigma+\tau\left(a_{1}\right) \sigma\left(b_{0}\right) \tau \sigma^{2} \\
& \quad+\tau\left(a_{1}\right) \sigma^{2}\left(b_{0}\right) \tau \\
& +a_{0} b_{0} \tau+a_{1} b_{0} \tau \sigma+b_{0} \tau\left(a_{1}\right) \tau \sigma^{2}+b_{0}^{2}+b_{0} \sigma\left(b_{0}\right) \sigma+b_{0} \sigma^{2}\left(b_{0}\right) \sigma^{2} \\
& +a_{0} \sigma\left(b_{0}\right) \tau \sigma+a_{1} \sigma\left(b_{0}\right) \tau \sigma^{2}+\sigma\left(b_{0}\right) \tau\left(a_{1}\right) \tau+b_{0} \sigma\left(b_{0}\right) \sigma^{2}+\sigma\left(b_{0}^{2}\right) \\
& \quad+\sigma\left(b_{0}\right) \sigma^{2}\left(b_{0}\right) \sigma \\
& +a_{0} \sigma^{2}\left(b_{0}\right) \tau \sigma^{2}+a_{1} \sigma^{2}\left(b_{0}\right) \tau+\tau\left(a_{1}\right) \sigma^{2}\left(b_{0}\right) \tau \sigma+b_{0} \sigma^{2}\left(b_{0}\right) \sigma \\
& \quad+\sigma\left(b_{0}\right) \sigma^{2}\left(b_{0}\right) \sigma^{2}+\sigma^{2}\left(b_{0}^{2}\right) .
\end{aligned}
$$

Hence,

$$
h^{2}=Z_{1}+Z_{\sigma} \sigma+Z_{\sigma^{2}} \sigma^{2}+Z_{\tau} \tau+Z_{\tau \sigma} \tau \sigma+Z_{\tau \sigma^{2}} \tau \sigma^{2}=0
$$

where

$$
\begin{aligned}
Z_{1} & =a_{0}^{2}+2 a_{1} \tau\left(a_{1}\right)+b_{0}^{2}+\sigma\left(b_{0}^{2}\right)+\sigma^{2}\left(b_{0}^{2}\right) \\
Z_{\sigma} & =2 a_{0} a_{1}+\tau\left(a_{1}^{2}\right)+b_{0} \sigma\left(b_{0}\right)+\sigma\left(b_{0}\right) \sigma^{2}\left(b_{0}\right)+b_{0} \sigma^{2}\left(b_{0}\right) \\
Z_{\sigma^{2}} & =2 a_{0} \tau\left(a_{1}\right)+a_{1}^{2}+b_{0} \sigma\left(b_{0}\right)+\sigma\left(b_{0}\right) \sigma^{2}\left(b_{0}\right)+b_{0} \sigma^{2}\left(b_{0}\right) \\
Z_{\tau} & =2 a_{0} b_{0}+\left(a_{1}+\tau\left(a_{1}\right)\right) \sigma\left(b_{0}\right)+\left(a_{1}+\tau\left(a_{1}\right)\right) \sigma^{2}\left(b_{0}\right) \\
Z_{\tau \sigma} & =2 a_{0} \sigma\left(b_{0}\right)+\left(a_{1}+\tau\left(a_{1}\right)\right) b_{0}+\left(a_{1}+\tau\left(a_{1}\right)\right) \sigma^{2}\left(b_{0}\right) \\
Z_{\tau \sigma^{2}} & =2 a_{0} \sigma^{2}\left(b_{0}\right)+\left(a_{1}+\tau\left(a_{1}\right)\right) b_{0}+\left(a_{1}+\tau\left(a_{1}\right)\right) \sigma\left(b_{0}\right) .
\end{aligned}
$$

Thus

$$
Z_{1}=Z_{\sigma}=Z_{\sigma^{2}}=Z_{\tau}=Z_{\tau \sigma}=Z_{\tau \sigma^{2}}=0
$$

and from this system, the result follows.

Example 11. Let L be the splitting field of $x^{3}-2$ over \mathbb{Q}. Then L / \mathbb{Q} is Galois with group D_{3}. Here, $\mathcal{D}=-108$ which is not a square in \mathbb{Q}. However, $-b \mathcal{D}=0 \cdot-108=0$ is a square in \mathbb{Q}.
H_{λ} contains the non-trivial nilpotent element of index 2 :

$$
h=\sqrt[3]{2} \tau+\sqrt[3]{2} \zeta_{3} \tau \sigma+\sqrt[3]{2} \zeta_{3}^{2} \tau \sigma^{2}
$$

Example 12. Let L be the splitting field of $p(x)=x^{3}+23 x-529$ over \mathbb{Q}. As one can check, $p(x)$ is irreducible over \mathbb{Q}, and $\mathcal{D}=-7604375$ is not a square in \mathbb{Q}. Hence L / \mathbb{Q} is Galois with group D_{3}. Now

$$
-b \mathcal{D}=174900625=13225^{2}
$$

The splitting field of $p(x)$ is $L=\mathbb{Q}\left(b_{0}, \sqrt{-23}\right)$, where b_{0} is a root of $p(x)$. Moreover, H_{λ} contains the non-trivial nilpotent index 2 element

$$
h=\sqrt{-23} \sigma-\sqrt{-23} \sigma^{2}+b_{0} \tau+\sigma\left(b_{0}\right) \tau \sigma+\sigma^{2}\left(b_{0}\right) \tau \sigma^{2}
$$

Example 13. Let $p(x)=x^{3}-4 x+1$. Then $p(x)$ is irreducible with $\mathcal{D}=229$ and so the splitting field of $p(x)$ over \mathbb{Q} is Galois with group D_{3}. However, $-b \mathcal{D}=4 \cdot 229$, which is not a square in \mathbb{Q}.

By Theorem 6,

$$
H_{\lambda} \cong \mathbb{Q} \times \mathbb{Q} \times \operatorname{Mat}_{2}(\mathbb{Q})
$$

and hence H_{λ} contains a non-trivial nilpotent element h with $h^{2}=0$.

Theorem 10 tells us how to construct from this h an irreducible cubic $x^{3}+b^{\prime} x-c^{\prime}$ with discriminant \mathcal{D}^{\prime} whose splitting field is the same as that of $p(x)$, and which satisfies $-b^{\prime} \mathcal{D}^{\prime}$ a square in \mathbb{Q}.

6. Application to D_{4}

Let L / \mathbb{Q} be Galois with group D_{4}. By (Curtis and Reiner)

$$
\mathbb{Q}\left[D_{4}\right] \cong \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \operatorname{Mat}_{2}(\mathbb{Q})
$$

and so, by Theorem 6,

$$
H_{\lambda} \cong \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \operatorname{Mat}_{2}(\mathbb{Q}) .
$$

The lattice of fixed fields is:

Note that $L^{\left\langle\sigma^{2}\right\rangle}$ is the unique biquadratic extension of \mathbb{Q} contained in L.

We have $L^{\left\langle\sigma^{2}\right\rangle}=\mathbb{Q}(\alpha, \beta)$ with $L^{\left\langle\sigma^{2}, \tau\right\rangle}=\mathbb{Q}(\beta), L^{\langle\sigma\rangle}=\mathbb{Q}(\alpha)$ and $L^{\left\langle\sigma^{2}, \tau \sigma^{3}\right\rangle}=\mathbb{Q}(\alpha \beta)$.

Thus $b_{0}=b_{0,1}+b_{0,2} \beta, a_{1}=a_{1,1}+a_{1,2} \alpha$, and $b_{1}=b_{1,1}+b_{1,2} \alpha \beta$ for some $b_{0,1}, b_{0,2}, a_{1,1}, a_{1,2}, b_{1,1}, b_{1,2} \in \mathbb{Q}$.

We have $\sigma\left(b_{0}\right)=b_{0,1}-b_{0,2} \beta, \sigma\left(b_{1}\right)=b_{1,1}-b_{1,2} \alpha \beta$, and $\tau\left(a_{1}\right)=a_{1,1}-a_{1,2} \alpha$.

Lemma 14. The component $\operatorname{Mat}_{2}(\mathbb{Q})$ in the decomposition of H_{λ} has \mathbb{Q}-basis

$$
\left\{\left(1-\sigma^{2}\right) / 2, \alpha\left(\sigma-\sigma^{3}\right), \beta\left(\tau-\tau \sigma^{2}\right), \alpha \beta\left(\tau \sigma-\tau \sigma^{3}\right)\right\}
$$

Proof. The idempotents corresponding to the 4 copies of \mathbb{Q} in the decomposition of H_{λ} are $e_{i}=\frac{1}{8} \sum_{s \in D_{4}} \chi_{i}\left(s^{-1}\right) s, 1 \leq i \leq 4$, where χ_{i} are the characters of the 4 1-dimensional irreducible representations of D_{4} (each e_{i} is in $L D_{4}$ and is fixed by D_{4}, hence $\left.e_{i} \in H_{\lambda, 4}\right)$.

The idempotent corresponding to the component $\operatorname{Mat}_{2}(\mathbb{Q})$ is

$$
e=1-\sum_{i=1}^{4} e_{i}=\frac{1-\sigma^{2}}{2}
$$

By Lemma 9, a typical element of H_{λ} appears as $h=a_{0}+a_{1} \sigma+a_{2} \sigma^{2}+\tau\left(a_{1}\right) \sigma^{3}+b_{0} \tau+b_{1} \tau \sigma+\sigma\left(b_{0}\right) \tau \sigma^{2}+\sigma\left(b_{1}\right) \tau \sigma^{3}$, where $a_{0}, a_{2} \in \mathbb{Q}, a_{1} \in L^{\langle\sigma\rangle}, b_{0} \in L^{\left\langle\sigma^{2}, \tau\right\rangle}$, and $b_{1} \in L^{\left\langle\sigma^{2}, \tau \sigma^{3}\right\rangle}$.

Thus a typical element of $\operatorname{Mat}_{2}(\mathbb{Q})$ is

$$
\begin{aligned}
e h= & \left(\frac{1-\sigma^{2}}{2}\right)\left(a_{0}+a_{1} \sigma+a_{2} \sigma^{2}+\tau\left(a_{1}\right) \sigma^{3}+b_{0} \tau+b_{1} \tau \sigma\right. \\
& \left.+\sigma\left(b_{0}\right) \tau \sigma^{2}+\sigma\left(b_{1}\right) \tau \sigma^{3}\right) \\
= & q\left(\frac{1-\sigma^{2}}{2}\right)+a_{1,2} \alpha\left(\sigma-\sigma^{3}\right)+b_{0,2} \beta\left(\tau-\tau \sigma^{2}\right) \\
& +b_{1,2} \alpha \beta\left(\tau \sigma-\tau \sigma^{3}\right)
\end{aligned}
$$

for $q, a_{1,2}, b_{0,2}, b_{1,2} \in \mathbb{Q}$. Thus

$$
\left\{\left(1-\sigma^{2}\right) / 2, \alpha\left(\sigma-\sigma^{3}\right), \beta\left(\tau-\tau \sigma^{2}\right), \alpha \beta\left(\tau \sigma-\tau \sigma^{3}\right)\right\}
$$

is a \mathbb{Q}-basis for $\operatorname{Mat}_{2}(\mathbb{Q})$.

Theorem 15. Let L / \mathbb{Q} be a Galois extension with group D_{4}. Then there exists a non-trivial solution (b, c, d) in \mathbb{Q} of the equation

$$
\begin{equation*}
b^{2} \alpha^{2}=c^{2} \beta^{2}+d^{2} \alpha^{2} \beta^{2} \tag{1}
\end{equation*}
$$

where $\mathbb{Q}(\alpha, \beta) / \mathbb{Q}$ is the unique biquadratic extension contained in L, with $\alpha^{2}, \beta^{2} \in \mathbb{Q}$.

Proof. By Lemma 14, the component $\operatorname{Mat}_{2}(\mathbb{Q})$ has \mathbb{Q}-basis

$$
\left\{\left(1-\sigma^{2}\right) / 2, \alpha\left(\sigma-\sigma^{3}\right), \beta\left(\tau-\tau \sigma^{2}\right), \alpha \beta\left(\tau \sigma-\tau \sigma^{3}\right)\right\}
$$

Put $1:=\left(1-\sigma^{2}\right) / 2, X:=\alpha\left(\sigma-\sigma^{3}\right), Y:=\beta\left(\tau-\tau \sigma^{2}\right)$, and $Z:=\alpha \beta\left(\tau \sigma-\tau \sigma^{3}\right)$.

Then we have the multiplication table:

	1	X	Y	Z
1	1	X	Y	Z
X	X	$-4 \alpha^{2}$	$-2 Z$	$2 \alpha^{2} Y$
Y	Y	$2 Z$	$4 \beta^{2}$	$2 \beta^{2} X$
Z	Z	$-2 \alpha^{2} Y$	$-2 \beta^{2} X$	$4 \alpha^{2} \beta^{2}$

Clearly, $\operatorname{Mat}_{2}(\mathbb{Q}) \subseteq H_{\lambda}$ contains an element $h \in$ with $h^{2}=0$ and $h \neq 0$. Write

$$
h=a+b X+c Y+d Z
$$

for $a, b, c, d \in \mathbb{Q}$. Then

$$
\begin{aligned}
h^{2} & =(a+b X+c Y+d Z)(a+b X+c Y+d Z) \\
& =\left(a^{2}-4 b^{2} \alpha^{2}+4 c^{2} \beta^{2}+4 d^{2} \alpha^{2} \beta^{2}\right)+2 a b X+2 a c Y+2 a d Z \\
& =0,
\end{aligned}
$$

and so,

$$
\begin{aligned}
a^{2}+4 c^{2} \beta^{2}+4 d^{2} \alpha^{2} \beta^{2} & =4 b^{2} \alpha^{2} \\
2 a b & =0 \\
2 a c & =0 \\
2 a d & =0 .
\end{aligned}
$$

If $a \neq 0$, then $b=c=d=0$, hence $a^{2}=0$, which is impossible. So we assume that $a=0$.

It follows that $h^{2}=0, h \neq 0$, implies that there is a non-trivial solution (b, c, d) to

$$
b^{2} \alpha^{2}=c^{2} \beta^{2}+d^{2} \alpha^{2} \beta^{2}
$$

Moreover, h is non-trivial if and only if (b, c, d) is non-trivial.

Example 16. Let L be the splitting field of $x^{4}-2$ over \mathbb{Q}. By $[3$, Corollary 4.5], the Galois group is D_{4}. We have $L=\mathbb{Q}(\sqrt[4]{2}, i)$ with $\sigma(i)=i, \sigma(\sqrt[4]{2})=-i \sqrt[4]{2}, \tau(i)=-i$, and $\tau(\sqrt[4]{2})=\sqrt[4]{2}$. The lattice of the unique biquadratic extension is

where $L^{\left\langle\sigma^{2}\right\rangle}=\mathbb{Q}(\sqrt{2}, i)$ is the unique biquadratic extension in L with quadratic subfields $L^{\left\langle\sigma^{2}, \tau\right\rangle}=\mathbb{Q}(\sqrt{2}), L^{\langle\sigma\rangle}=\mathbb{Q}(i)$, and $L^{\left\langle\sigma^{2}, \tau \sigma^{3}\right\rangle}=\mathbb{Q}(i \sqrt{2})$. We choose $\beta=\sqrt{2}, \alpha=i$. Then equation (1) is

$$
-b^{2}=2 c^{2}-2 d^{2}
$$

which has a non-trivial solution $(b, c, d)=(0,1,1)$. The corresponding element $h \in \operatorname{Mat}_{2}(\mathbb{Q})$ is

$$
h=\sqrt{2}\left(\tau-\tau \sigma^{2}\right)+i \sqrt{2}\left(\tau \sigma-\tau \sigma^{3}\right)
$$

which satisfies $h^{2}=0, h \neq 0$.

Example 17. Let $f(x)=x^{4}-4 x^{2}-3$. Then $p(x)=f(x-1)$ is irreducible over \mathbb{Q}, by the Eisenstein criterion, and hence $f(x)$ is irreducible over \mathbb{Q}. By [3, Corollary 4.5] the Galois group of the splitting field of $f(x)$ is D_{4}. Note that the discriminant satisfies

$$
\mathcal{D}=-37632=-3 \cdot 12544=-3 \cdot 112^{2}=-147 \cdot 16^{2} .
$$

The roots of $f(x)$ are

$$
\sqrt{2+\sqrt{7}}, \sqrt{2-\sqrt{7}},-\sqrt{2+\sqrt{7}},-\sqrt{2-\sqrt{7}}
$$

The splitting field over \mathbb{Q} is $L=\mathbb{Q}(\sqrt{2+\sqrt{7}}, i \sqrt{3})$. The Galois action is given by

$$
\begin{gathered}
\sigma(\sqrt{2+\sqrt{7}})=\sqrt{2-\sqrt{7}}, \sigma(\sqrt{2-\sqrt{7}})=-\sqrt{2+\sqrt{7}}, \\
\tau(\sqrt{2+\sqrt{7}})=\sqrt{2+\sqrt{7}}, \tau(\sqrt{2-\sqrt{7}})=-\sqrt{2-\sqrt{7}}, \\
\\
\sigma(i \sqrt{3})=\tau(i \sqrt{3})=-i \sqrt{3} .
\end{gathered}
$$

The unique biquadratic extension contained in L is $\mathbb{Q}(\sqrt{7}, i \sqrt{3})=\mathbb{Q}(\sqrt{7}, i \sqrt{21})$, with lattice

where $L^{\left\langle\sigma^{2}\right\rangle}=\mathbb{Q}(\sqrt{7}, i \sqrt{21})$, with quadratic subfields $L^{\left\langle\sigma^{2}, \tau\right\rangle}=\mathbb{Q}(\sqrt{7}), L^{\langle\sigma\rangle}=\mathbb{Q}(i \sqrt{21})$, and $L^{\left\langle\sigma^{2}, \tau \sigma^{3}\right\rangle}=\mathbb{Q}(i \sqrt{37632})=\mathbb{Q}(i \sqrt{147})=\mathbb{Q}(i \sqrt{3})$, see [3, proof of Theorem 4.1]. Let $\beta=\sqrt{7}, \alpha=i \sqrt{21}$. Then equation (1) is

$$
-21 b^{2}=7 c^{2}-147 d^{2}
$$

which has non-trivial solution $(b, c, d)=(1,9,2)$. Thus

$$
i \sqrt{21}\left(\sigma-\sigma^{3}\right)+9 \sqrt{7}\left(\tau-\tau \sigma^{2}\right)+2 i \sqrt{147}\left(\tau \sigma-\tau \sigma^{3}\right)
$$

is a non-trivial nilpotent element of index 2 in H_{λ}.

7. Application to a Result of Ledet

We obtain a new proof of the following result of A. Ledet [6, 0.4]:
Theorem 18.(Ledet) Let L / \mathbb{Q} be a Galois extension with group D_{4}. Let $\mathbb{Q}(\alpha, \beta) / \mathbb{Q}$ be the unique biquadratic extension contained in L. Then $\beta^{2} \alpha^{2}$ is a norm in $\mathbb{Q}(\beta) / \mathbb{Q}$.

Proof. By Theorem 15 there exists a non-trivial solution (b, c, d) in \mathbb{Q} to the equation

$$
b^{2} \alpha^{2}=c^{2} \beta^{2}+d^{2} \alpha^{2} \beta^{2}
$$

Assuming $c \neq 0, \alpha \neq 0$, we have

$$
\frac{b^{2}}{c^{2}}-\frac{d^{2}}{c^{2}} \beta^{2}=\frac{\beta^{2}}{\alpha^{2}}
$$

thus $\frac{\beta^{2}}{\alpha^{2}}$ is a norm in $\mathbb{Q}(\beta) / \mathbb{Q}$. Consequently, $\beta^{2} \alpha^{2}$ is a norm in $\mathbb{Q}(\beta) / \mathbb{Q}$.

Ledet's result also gives another proof of Greither's result (Theorem 6) in the case $G=D_{4}$:

Theorem 19. Let L / \mathbb{Q} be a Galois extension with group D_{4}. Then

$$
H_{\lambda} \cong \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \operatorname{Mat}_{2}(\mathbb{Q})
$$

Proof. Regardless of Greither's result, we always have

$$
H_{\lambda} \cong \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \operatorname{Mat}_{r}(R)
$$

where $1 \leq r \leq 2$ and R is some division ring.

Now, L / \mathbb{Q} is a solution to the "Galois theoretical embedding problem" given by $\mathbb{Q}(\alpha, \beta) / \mathbb{Q}$ and the short exact sequence

$$
1 \rightarrow\left\langle\sigma^{2}\right\rangle \rightarrow D_{4} \rightarrow C_{2} \times C_{2} \rightarrow 1
$$

So by $[6,0.4], \beta^{2} \alpha^{2}$ is a norm in $\mathbb{Q}(\beta) / \mathbb{Q}$, that is, there exist $x, y \in \mathbb{Q}$ so that

$$
x^{2}-y^{2} \beta^{2}=\beta^{2} \alpha^{2}
$$

Thus,

$$
\begin{aligned}
& x^{2}=\beta^{2} \alpha^{2}+y^{2} \beta^{2}, \quad \text { or } \\
& x^{2} \alpha^{2}=\alpha^{4} \beta^{2}+y^{2} \alpha^{2} \beta^{2} .
\end{aligned}
$$

Let $b=x, c=\alpha^{2}, d=y$. Then

$$
b X+c Y+d Z
$$

is a non-trivial nilpotent of index 2 in H_{λ}, thus

$$
H_{\lambda} \cong \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \operatorname{Mat}_{2}(\mathbb{Q})
$$

L．N．Childs．
Taming Wild Extensions：Hopf Algebras and Local Galois Module Theory．
AMS：Mathematical Surveys and Monographs，80， 2000.
圊 L．N．Childs．
Hopf Galois structures on Kummer extensions of prime power degree
New York J．Math．，17，51－74， 2011.
目 K．Conrad，Galois groups of cubics and quartics（not in characteristic 2），
http：／／www．math．uconn．edu／
～kconrad／blurbs／galoistheory／cubicquartic．pdf
嗇 C．Greither and B．Pareigis．
Hopf Galois theory for separable field extensions．
J．Algebra，106（1），239－258， 1987.

比 A．Koch，T．Kohl，P．Truman，and R．Underwood．
The Structure of Hopf algebras acting on dihedral extensions．
in Advances in Algebra，Proc．Math．Stats．，Springer，to
appear．
固 A．Ledet，
Embedding problems and equivalence of quadratic forms．
Math．Scand．，88，279－302， 2001.
E A．Koch，T．Kohl，P．Truman，and R．Underwood．
Isomorphism problems for Hopf－Galois structures on separable field extensions．
arXiv：1711．05554， 2017.
囯 W．C．Waterhouse．
Introduction to Affine Group Schemes．
Springer－Verlag，New York， 1979.

